
- 14 -

January 21, 1992

Don Libes
National Institute of Standards and Technology

photo

Don Libes received a B.A. in Mathematics from

Rutgers University and an M.S. in Computer Sci-

ence from the University of Rochester.

Currently at the National Institute of Standards and

Technology, Don is engaged in research that will

help U.S. industry measure the standard hack.

Unfortunately, NIST does not have a very good

sense of humor, so he was forced to write his first

book “Life With UNIX” through Prentice-Hall.

- 13 -

January 21, 1992

expect is designed to work with programs as they are. Programs need not be changed or rede-

signed, no matter how poorly written. Understandably, the majority of system administrators are

reluctant to modify a program that works and that they have not written themselves. Most prefer

writing shell scripts using the classic UNIX tools philosophy.

expect handles these problems, solving them directly and with elegance. expect scripts are small

and simple for problems that are small and simple. While not all expect scripts are small, the

scripts scale well. They are comparable in style to shell scripts, being task-oriented, and provide

synergy with shell scripts, both because they can call shell scripts and be called by them. Used

judiciously, expect is a welcome new tool to the workbench of all UNIX system administrators.

Acknowledgments

This work was jointly funded by the NIST Automated Manufacturing Research Facility (AMRF,

project 734-3385) and Scientific and Technical Research Services (STRS, project 734-3106).

The callback script was written by Scott Paisley. Walter Rowe wrote the sendmail version-

checking script mentioned in the paper. Thanks to Walter Rowe and Ken Manheimer for their

helpful comments on this paper. Sue Mulroney was helpful in correcting my badly grammar.

Availability

Since the design and implementation of expect was paid for by the U.S. government, it is in the

public domain. However, the author and NIST would like credit if this program, documentation

or portions of them are used. expect may be ftp’d as pub/expect/expect.shar.Z from ftp.cme

.nist.gov. expect will be mailed to you, if you send the mail message send pub/expect/

expect.shar.Z to library@cme.nist.gov.

References

[1] Don Libes, "expect: Curing Those Uncontrollable Fits of Interaction", Proceedings of the

Summer 1990 USENIX Conference, Anaheim, CA, June 10-15, 1990.

[2] Don Libes, “The expect User Manual – programmatic dialogue with interactive programs”,

to appear as a NIST IR, National Institute of Standards and Technology, November, 1990.

[3] John Ousterhout, “Tcl: An Embeddable Command Language”, Proceedings of the Winter

1990 USENIX Conference, Washington, D.C., January 22-26, 1990.

[4] John Ousterhout, “tcl(3) – overview of tool command language facilities”, unpublished

manual page, University of California at Berkeley, January 1990.

[5] AT&T, UNIX Programmer’s Manual, Section 8.

[6] Larry Wall, “Perl – Practical Extraction and Report Language”, unpublished manual page,

March 1990.

- 12 -

January 21, 1992

includes a high-level language that is interpreted and bears a strong similarity to the shell and also

to C. In that sense, I see little to argue about since expect can do shell-like functions. In a previ-

ous paper [1], I have suggested the addition of expect’s features to the shell. No one wants to

learn yet another shell, and there is no reason why these capabilities cannot be added to the shell.

Perl

A more interesting comparison is with Perl, a language claimed (by the author) [6] to embody the

best aspects of the shell, C, awk, sed, and a number of other UNIX tools. Having spent some time

programming in Perl, there is no question in my mind that Perl is capable of solving the same

tasks that I have described in this paper. Pseudo-tty packages for Perl have been written and

send/expect utilities could be written also.

Perl is a very powerful language. It is much richer than the language used by expect (or any shell

for that matter). This has advantages and disadvantages. The most obvious disadvantage is that

Perl’s overabundance of options and features simply aren’t necessary for the tasks that expect

addresses. Perl’s complexity is reflected in its disk space. The computer on my desk, a Sun 3,

requires 270K to store Perl and has a significant startup time. expect, on the other hand, is 70K

with essentially no startup time. There are other reasons that Perl is not widely applied to certain

problems, but completing the discussion deserves a paper of its own.

Instead I will summarize by saying that expect is appropriate to only a fraction of the system

administration problems that Perl solves. This is intentionally so. expect was written to solve a

very specific problem, and it does that concisely and efficiently. I think that it fits well with the

UNIX philosophy of small tools, unlike Perl which demands a significant investment in mastering

its complexity. Given the choice, I predict that most system administrators would choose a tool

like expect that takes very little effort to learn, rather than entering the world of Perl.

Emacs

Emacs is analogous to Perl in many ways, including its flexibility and overabundance of function-

ality. Similarly, Emacs can be used to solve these same problems. And for much the same rea-

sons as I gave above, Emacs is inappropriate for the class of problems I have suggested in this

paper. Indeed, considering that Emacs has been available for over a decade, and I’ve never heard

of anyone using it this way, I’ll proffer that Emacs is so inappropriate for these problems, that it is

not surprising this usage has never even occurred to anyone.

Conclusion

UNIX shells are incapable of controlling interactive processes. This has been at the root of many

difficulties automating system administration tasks. While the UNIX community is gradually

providing better designed tools and user interfaces, even more programs are being written with

embarrassingly poor user interfaces at the same time. This is understandable because system

administrators give more priority to solving a problem so they can go to the next one, than going

back to pretty up an old and working solution.

- 11 -

January 21, 1992

systems. How much more work could it possibly be for you to administer just one more system?

Oh, and it runs VMS.")

Security

Several of the examples presented have prompted for passwords that are different than the usual

UNIX style. Normally, UNIX prompts for passwords directly from /dev/tty. This has the unfor-

tunate drawback that you cannot redirect stdin. We have shown how to get around that by using

expect.

Of course, doing this reopens a possible security hole. Unprivileged users can detect passwords

passed as arguments by using ps. If passwords are stored in files, lapses in security can make

plaintext passwords evident to people browsing through your files. Publicly-readable backup

media are one of the simplest such security lapses.

If you are at all interested in security, I do not recommend storing plaintext passwords in files.

The likelihood of such a password being discovered and abused is just too high. Our users store

passwords in files, but only for highly restricted accounts, such as for demos or anonymous ftp.

The chances of leaking a password through ps are lower, and can be lowered further still by using

the smallest possible script around the password prompting program. Such a window is

extremely small. Nonetheless, secure sites should not take even this chance.

An alternative is to have expect interactively prompt for passwords. If you have an expect script

that is doing a complicated series of telnets, ftps and other things, the scripts can encode every-

thing but the passwords. Upon running such a script, the user will be only be prompted once for a

password, and nothing else. Then expect will use that password whenever necessary, and com-

plete all the other dialogue from data pre-stored in files.

In summary, expect need not weaken security. Used wisely, expect can even enhance security.

However, you must use common sense when writing scripts.

Comparison to other system administration tools

This section of the paper can be considered controversy or heresy, as you wish. It is somewhat

religious in that the arguments can only be resolved by philosophical choice rather than logic. I

have kept it down to a very few reasons to give you only the barest feelings for what I consider is

important to understand when choosing expect over other system administration tools.

As should be obvious, I think there are very few alternatives to using expect. Traditionally, the

popular choices have been 1) avoidance and 2) C programming. These are now no longer the

only choices.

Shell

The shell is incapable of controlling interactive processes in the way that expect can. Nonethe-

less, certain comparisons between expect and the shell are inevitable. In particular, expect

- 10 -

January 21, 1992

you can transfer a hierarchy no matter what it looks like or how deep it is. expect supports recur-

sive procedures, making this task a short script. My site regularly retrieves large distributions

(e.g., Gnu, X) this way.

Assisting adb and other “dumb” programs

Quite often, vendors provide instructions for modifying systems in the form of adb instructions,

where some instructions may depend on the results of earlier ones (i.e., “each time _maxusers is

incremented, you must add 16 to _nfile”). adb has no special scripting language that supports

such interaction, nor does the shell provide this capability. expect can perform this interaction,

playing the part of the user, by directly looking at the results of operations, just as a user would.

This technique can be applied to any program. In fact, expect can act as an intermediary between

the user and programs with poorly-written user interfaces. expect normally shows the entire dia-

logue but can be told not to. Then expect can prompt the user for commands such as show

_maxusers instead of adb’s native but cryptic _maxusers/d. Translations can also be per-

formed in the reverse direction. A short expect script could limit the difficulty of system adminis-

trators who have no interest in mastering adb. In addition, the ability of system administrators to

accidentally crash the system by a few errant keystrokes would be dramatically lessened.

Grepping monster log files

A common command sequence involves looking at a log with, say, grep, and then interrupting it

(with ^C) after the line of interest appears. Unfortunately, grep and other programs are limited to

the amount of programmability they have. For example, grep can not be directed to stop search-

ing after the first match. A short expect script can send an interrupt to grep after seeing the first

line just as if the user were actually at the keyboard.

With programs that generate log files as large as a gigabyte, this is a real problem. Without

expect, the only solutions are to let grep continue running over the whole file, or to dedicate a

human to the task of pressing ^C at the right time. expect can cut off the process as soon as pos-

sible, mailing the results back the system administrator if necessary.

In general, expect is useful for sending odd characters to a process that cannot be embedded in a

shell script. expect can also execute job control commands (bg, fg, etc.) in order to mediate

between processes that were never designed to communicate with each other. Again, this can

relieve a human from the tedious task of interactively monitoring programs.

Administering non-UNIX systems

expect is a UNIX program, yet it can be used to administer non-UNIX systems. How is this pos-

sible? Running telnet (tip, kermit, etc.) to a non-UNIX host, it can log in and perform send/ex-

pect sequences on the remote computer. The operating system or environment of the remote

computer is completely irrelevant to expect, since all of this is isolated to the expect script itself.

This is very useful for system administrators that already have a UNIX computer on their desk but

are forced by management to administer another computer. ("You already administer 20 UNIX

- 9 -

January 21, 1992

su, passwd, crypt and other password–eaters

Programs that read and write /dev/tty cannot be used from shell scripts without the shell script

accessing /dev/tty. An earlier example showed how to force passwd not to read from /dev/tty.

With this technique, you can change its input source to stdin, a parameter, or even an environment

variable.

As another example, suppose you have typed a command that fails because you weren’t root. The

typical reaction is to type su and then reenter the command. Unfortunately, history won’t work in

this situation as !-2 will just evoke the error -1: Event not found. The problem is that

you want to refer to a command that is now in a different shell instantiation, and there is no way to

get back to it.

A solution is to pass the failed command as an argument (via !!) to an expect script that will

prompt you for the root password, invoke su, and then feed the original failed command to the

resulting superuser shell. If the expect script executes interact as its last action, you will have the

original command executed for you (no retyping), plus you will get a new superuser shell. There

is no way to do this with su except by resorting to temporary files for your history and a lot of

retyping.

A more painful example is newgrp. Unlike su, newgrp does not allow additional arguments on

the command line to be passed to the new shell. You must interactively enter them after newgrp

begins executing. In either case, both su and newgrp are essentially useless in shell scripts.

Security – The good news is …

Earlier, I mentioned how to build a script that would force users to choose good passwords with-

out rewriting passwd. All other alternatives either rewrite the passwd program or ask the user to

be responsible for choosing a good password.

On the opposite side of the coin, expect can be used to test other sites for secure logins (or to

break in, I suppose). Trying to login as root using, say, all the words in an on-line dictionary, at

all the local hosts at a site would be prohibitively expensive for a human to do. expect would

work at it relentlessly, eventually finding an insecure root, or showing the site to be protected by

good passwords.

Questions at boot time

While booting, it is useful to validate important system facts (e.g., date) before coming up all the

way. Of course, if no one is standing in front of the console (e.g., the system booted due to a

power failure) the computer should come up anyway. Writing such a script using the shell is pain-

ful, primarily because a read-with-timeout is not directly implemented in the shell. In expect, all

reads timeout. expect can prompt and read from the keyboard just as easily as from a process.

Transferring hierarchies with ftp

Anonymous ftp is very painful when it comes to directory hierarchies. Since there is no recursive

copy command, you must explicitly do cds and gets. You can automate this in a shell script, but

only if the hierarchy is known in advance. expect can execute an ls and look at the results so that

- 8 -

January 21, 1992

In this section, more examples will be discussed. Because of space limitations, scripts will not be

shown, but all of them have been written and are being used.

Regression testing

Testing new releases of interactive software (tip, telnet, etc.) requires a human to press keys and

watch for correct responses. Doing this more than a few times becomes quite tiresome. Natu-

rally, people are much less likely to run thorough regression tests after making small changes that

they think probably don’t affect other parts of a program.

Regression testing can also be useful for your entire installation. You can make a script that tests

all your site’s local applications, and run it at after each system upgrade or configuration change.

Automating logins

Many programs have a frequently repeated, well-defined set of commands and another set that are

not well-defined. For example, a typical telnet session always begins with a log in, after which

the user can do anything. To automate this, expect has the ability to pass control from the script to

the user. At any time, the user can return control to the script temporarily to execute sequences of

commonly repeated commands.

At my site, expect is heavily used to automate the process of logging in through multiple front-

ends and communication switches. In fact, the original reason expect was written was to create

six windows, each of which automatically logged in to another host to run a demo.

The general idea of automating telnet, ftp, and tip is very useful when dealing with hosts that do

not support rlogin and rcp. But the technique is also useful with native UNIX commands like su,

login, or rlogin. expect scripts can call any of them, sending passwords as appropriate and then

continuing actions as desired. While any of these commands can be embedded in a shell script,

the shell has no way of taking control over what happens inside of these programs. Subsequent

commands from the shell script do not get sent to the new context, but are held up until the previ-

ous command has completed so that they can be sent to the original context. expect has no such

problems switching contexts to continue controlling any of these sessions.

telnet – It’s not just for breakfast anymore

telnet also functions as an interface to the exciting world of TCP sockets. telnet can be used to

access non-telnet sockets and query other hosts for their date (port 13), time (port 37), list of

active users (port 11), user information (port 43), network status (port 15), and all sorts of other

goodies that you might only be able to get if you had permission to log in.

For example, our site regularly runs a script that checks (port 25) what version of sendmail.cf

each of our local hosts is actually using. If we did this by reading files, we would need permission

to log in, or remotely mount file systems and read directories and files on several hundred hosts.

Using telnet is much easier, albeit a little strange.

- 7 -

January 21, 1992

is important is that expect scripts are small and simple for problems that are small and simple.

expect obviates the need for resorting to C just because of limitations on the part of the shell.

Example – Intelligent ftp

One of our site administrators wanted to spool files in a directory. Later, a second computer

would use ftp to pick them up and then delete them from the first computer. His first attempt was

to use mget * followed by mdelete *. Unfortunately, this deletes files that arrive in the win-

dow between when the mget starts and the mdelete starts. The script fragment in Listing 5 solved

the problem.

The script begins by spawning ftp. I have omitted several lines that open a connection followed

by sending and confirming the user and password information. The next line sends an ftp com-

mand to store the list of remote files in a local file called lsFile. This command is terminated by a

semicolon, allowing the response to be verified with an expect command on the same line of the

script.

exec – Execute a UNIX command.

exec executes a UNIX command and simply waits for it to complete, just as if it were in a shell

script. In line four, cat returns the list of files, and their names are stored in the variable, lsVar.

exec is used again in the next line, this time to delete the local file, lsFile.

The remainder of the script merely iterates through the variable lsVar, sending get commands fol-

lowed by delete commands for each file found in the earlier ls.

Other examples solved

expect addresses a surprisingly large class of system administration problems which before now

have either been solved by avoidance or special kludges. At the same time, expect does not

attempt to subsume functions already handled by other utilities. For example, there is no built-in

file transfer capability, because expect can just call a program to do that. And while the shell is

programmable, it cannot interact with other interactive processes and it cannot solve any of the

examples in this paper.

Listing 5 Fragment of ftp spool script.

spawn ftp

. . .

send ls * lsFile\r ;expect *success*ftp>*

set lsVar [exec cat lsFile]

exec rm lsFile\r

set len [length $lsVar]

for {set i 0} {$i < $len} {set i [expr $i+1]} {

set file [index $lsVar $i]

send get $file\r ;expect *success*ftp>*

send delete $file\r ;expect *success*ftp>*

}

- 6 -

January 21, 1992

If the script does not match one of the prespecified answers, the last case ({*?\ }) matches.

(The ? is necessary to prevent the script from triggering before the entire question arrives.) The

interact action passes control from the script to the keyboard (actually stdin) so that a human can

answer the question.

interact – Pass control from script to user and back.

During interact, the user takes control for direct interactions. Control is returned to the script

after pressing the optional escape character. In this script, + is chosen as the escape character by

passing it as the argument to interact.

A real expect script for fsck would do several other things. For example, fsck uses several stati-

cally-sized tables. For this reason, fsck is limited to the number of errors of one type that can be

fixed in a single pass. This may require fsck be run several times. While the manual says this,

fsck doesn’t, and few system administrators know fsck that intimately. When run from a shell

script, this lack of programmability will cause the system to come up all the way with a corrupt

file system (if the return code isn’t checked) or be unnecessarily rebooted several times (if the

return code is checked).

Example – Callback

The script in Listing 4 was written by a user who wanted to dial up the computer, and tell it to call

him back. Since he lived out of the local calling area, this would get the computer to pick up his

long-distance phone bills for him.

The first line spawns tip which opens a connection to a modem. Next, expect waits for tip to say

it is connected to the modem. The user’s phone number, passed as the first argument to the script,

is then fetched and added to a command to dial a Hayes-compatible modem. A carriage-return is

appended to make it appear as if a user had typed the string, and the modem begins dialing.

The third line assigns 60 to the variable timeout. expect actually looks at this variable in order to

tell it how many seconds to wait before giving up. Eventually the phone rings and the modem

answers. expect finds what it’s looking for and exits. At this point getty wakes up, and finding

that it has a dialup line with DTR on it, starts login which prompts the user to log in.

Since the script was originally written, we have added a few more lines to automate and verify

phone numbers based on the uid running it partly for security, but the fragment shown here was

used successfully and forms the heart of our current script. Ironically, we recently noticed a 60Kb

equivalent to callback on Usenet that had no more functionality than a dozen or so lines of

expect.

Of course, not all scripts are this short. I’m limited to what can be presented here, and these

examples really serve just to give you a feel of what expect does and how it can be applied. What

Listing 4 Callback script. First argument is phone number.

spawn tip modem

expect {*connected*}

send ATDT[index $argv 1]\r

set timeout 60

expect {*CONNECT*}

- 5 -

January 21, 1992

“Assume a yes response to all questions asked by fsck; this should be used with

extreme caution, as it is a free license to continue, even after severe problems

are encountered.”

The -n option has a similarly worthless meaning. This kind of interface is inexcusably bad, and

yet many programs have the same style. For example, ftp has an option that disables interactive

prompting so that it can be run from a script, but it provides no way to take alternative action

should an error occur.

Using expect, you can write a script that allows fsck to be run, having questions answered auto-

matically. Listing 2 is a script that can run fsck unattended while providing the same flexibility as

being run interactively. The script begins by spawning fsck.

for – Controls iteration (looping).

The language used by expect supports common high-level control structures such as if/then/else.

In the second line, a for loop is used which is structured similarly to the C-language version. The

body of the for contains one expect command.

The following expect command demonstrates the ability to look for multiple patterns simulta-

neously. (The backslashes (\) are used to quote characters – in this case whitespace.) In addition,

each pattern can have an accompanying action to execute if the pattern is found. This allows us to

prespecify answers for specific questions. When the questions UNREF FILE…CLEAR? or BAD

INODE NUMBER…FIX? appear, the script will automatically answer y. If anything else

appears, the script will answer n.

In general, if all questions are known and answerable in advance, a script can be run in the back-

ground. With more complex programs it may be desirable to trap unexpected questions and force

a user to interactively evaluate them. Listing 3 is a script does exactly this.

Listing 2 Non-interactive fsck script.

spawn fsck

for {} 1 {} {

expect eof break \

{*UNREF\ FILE*CLEAR?\ } {send y\r} \

{*BAD\ INODE*FIX?\ } {send y\r} \

{*?\ } {send n\r}

}

Listing 3 User-friendly fsck script.

spawn fsck

for {} 1 {} {

expect eof break \

{*UNREF\ FILE*CLEAR?\ } {send n\r} \

{*BLK(S)\ MISSING*SALVAGE?\ }{send y\r} \

{*?\ } {interact +}

}

- 4 -

January 21, 1992

spawn – Runs an interactive program.

The spawned program is referred to as the current process. In this example, passwd is spawned

and becomes the current process. A username is passed as an argument to passwd.

expect – Looks for a pattern in the output of the current process.

The argument defines the pattern. Additional optional arguments provide alternative patterns and

actions to execute when a pattern is seen. (An example will be shown later.)

In this example, expect looks for the pattern password. The asterisk allows it to match other

data in the input, and is a useful shortcut to avoid specifying everything in detail. There is no

action specified, so the command just waits until the pattern is found before continuing.

send – Sends its arguments to the current process.

The password is sent to the current process. The \r indicates a carriage-return. (All the “usual”

C conventions are supported.) There are two send/expect sequences because passwd asks the

password to be typed twice as a spelling verification. There is no point to this in a non-interactive

passwd, but the script has to do this because passwd doesn’t know better.

The final expect eof searches for an end-of-file in the output of passwd and demonstrates the

use of keyword patterns. Another one is timeout, used to denote the failure of any pattern to

match. Here, eof is necessary only because passwd is carefully written to check that all of its I/O

succeeds, including the final newline produced after the password has been entered a second time.

It is easy to add a call and test of grep $password /usr/dict/words to the script to

check that a password doesn’t appear in the on-line dictionary, however, we will leave the illustra-

tion of control structures to the next example.

Example – fsck

Many programs are ostensibly non-interactive. This is, they can run in the background but with a

very reduced functionality. For example, fsck can be run from a shell script only with the -y or -

n options. The manual [5] defines the -y option as follows:

Listing 1 Non-interactive passwd script. First argument
is username. Second argument is new password.

set password [index $argv 2]

spawn passwd [index $argv 1]

expect {*password:}

send $password\r

expect {*password:}

send $password\r

expect eof

- 3 -

January 21, 1992

expect is a general-purpose system for solving the interactive program problem, however it solves

an unusually large number of problems in the system administration arena. While the UNIX style

is to build small programs that can be used as building blocks in the construction of other pro-

grams using shells and pipelines, few system administration programs behave this way.

Traditionally, little time was spent designing good user interfaces for system administrator tools.

The reasons may be any or all of the following:

• System administrators were experienced programmers, and therefore didn’t

need all the hand-holding that general user programs require.

• Programs such as fsck and crash were run infrequently, so there was little

point spending much time on such rarely used tools.

• System administration tools were used in extreme conditions, considered not

worth programming for because of their difficulty or rarity. It was more cost-

effective to solve the problem by hand in real-time.

• System administrators solved problems in site-dependent ways, never expect-

ing their underdesigned programs to be propagated widely.

Whatever the reason, the result is that the UNIX system administrator’s toolbox is filled with rep-

resentatives of some of the worst user interfaces ever seen. While only a complete redesign will

help all of these problems, expect can be used to address a great many of them.

Example – passwd

The expect script in Listing 1 takes a password as an argument, and can be run non-interactively

such as by a shell script. A shell script could prompt and reject easily guessed passwords. Alter-

natively, the shell script could call a password generator. Such a combination could create large

numbers of accounts at a time without the system administrator having to hand-enter passwords

as is currently done.

Admittedly, the script reopens the original security problem that passwd was designed to solve.

This can be closed in a number of ways. For example, expect could generate the passwords itself

by directly calling the password generator from within the script.

The scripting language of expect is defined completely by Libes [1][2] and Ousterhout [3][4]. In

this paper, commands will be described as they are encountered. Rather than giving comprehen-

sive explanations of each command, only enough to understand the examples will be supplied.

set – Sets the first argument to the second (i.e., assignment).

In line 1 of the script, the first argument to set is password. The second is an expression that is

evaluated to return the second argument of the script by using the index command. The first argu-

ment of index is a list, from which it retrieves the element corresponding to the position of the

second argument. argv refers to the arguments of the script, in the same style as the C language

argv.

- 2 -

January 21, 1992

Introduction

UNIX system administration often involves using programs designed for interactive use. Many

such programs (passwd, su, etc.) cannot be placed into shell scripts. Some programs (fsck,

dump, etc.) are not specifically interactive, but have little support for automated use.

For example the passwd command prompts the user for a password. There is no way to supply

the password on the command line. If you use passwd from a shell script, it will block the script

from running while it prompts the user who invoked the shell script.

Because of this, you cannot, for example, reject passwords that are found in the system dictionary,

a common security measure. It is ironic that security was the reason that passwd was designed to

read directly from the keyboard to begin with.

passwd is not alone in this recalcitrant behavior. Many other programs do not work well inside of

shell scripts and quite a few of these are crucial tools to the system administrator. Examples are

rlogin, telnet, crypt, su, dump, adb, and fsck. More problems will be mentioned later.

The problem with all of these programs is not the programs themselves, but the shell. For exam-

ple, the shell cannot see prompts from interactive programs nor can it see error messages. The

shell cannot deal with interactive programs this way because it is incapable of creating a two-way

connection to a process. This is an inherent limitation of classic UNIX shells such as sh, csh and

ksh (from here on generically referred to as simply the shell).

expect – An Overview

expect is a program that solves the general problem of automating interactive programs. expect

communicates with processes by interposing itself between processes (see Figure 1). Pseudo-ttys

are used so that processes believe they are talking to a real user. A high-level script enables han-

dling of varied behavior. The script offers job control so that multiple programs can be controlled

simultaneously and affect one another. Also, a real user may take and return control from and to

the script whenever necessary.

Figure 1. expect is communicating with 5 processes simultaneously. The
script is in control and has disabled logging to the user. The user only sees
what the script says to send and is essentially treated as just another process.

expect

interactive
processes

script

January 21, 1992

Using expect to Automate System Administration Tasks

Don Libes

National Institute of Standards and Technology

Metrology Bldg, Room A-127

Gaithersburg, MD 20899

libes@cme.nist.gov

ABSTRACT

UNIX system administration often involves programs designed only for interactive

use. Many such programs (passwd, su, etc.) cannot be placed into shell scripts.

Some programs (fsck, dump, etc.) are not specifically interactive, but have poor

support for automated use.

expect is a program which can “talk” to interactive programs. A script is used to

guide the dialogue. Scripts are written in a high-level language and provide flexi-

bility for arbitrarily complex dialogues. By writing an expect script, one can run

interactive programs non-interactively.

Shell scripts are incapable of managing these system administration tasks, but

expect scripts can control them and many others. Tasks requiring a person dedi-

cated to interactively responding to badly written programs, can be automated. In

a large environment, the time and aggravation saved is immense.

expect is similar in style to the shell, and can easily be mastered by any system

administrator who can program in the shell already. This paper presents real exam-

ples of using expect to automate system administration tasks such as passwd and

fsck. Also discussed are a number of other system administration tasks that can be

automated.

Keywords: expect, fsck, interaction, passwd, password, programmed dialogue,

security, shell, Tcl, UNIX, uucp

Reprinted from Proceedings of the Fourth USENIX LISA Large Installation Sys-

tems Administration (LISA) Conference, Colorado Springs, CO, October 17-19,

1990.

